2,740 research outputs found

    The MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila

    Get PDF
    Septic injury triggers a rapid and widespread response in Drosophila adults that involves the up-regulation of many genes required to combat infection and for wound healing. Genome-wide expression profiling has already demonstrated that this response is controlled by signaling through the Toll, Imd, JAK-STAT and JNK pathways. Using oligonucleotide microarrays, we now demonstrate that the MAPKKK Mekk1 regulates a small subset of genes induced by septic injury including Turandot (Tot) stress genes. Our analysis indicates that Tot genes show a complex regulation pattern including signals from both the JAK-STAT and Imd pathways and Mekk1. Interestingly, Mekk1 flies are resistant to microbial infection but susceptible to paraquat, an inducer of oxidative stress. These results point to a role of Mekk1 in the protection against tissue damage and/or protein degradation and indicate complex interactions between stress and immune pathways in Drosophila

    Machine Learning Patterns for Neuroimaging-Genetic Studies in the Cloud

    Get PDF
    International audienceBrain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a two weeks deployment on hundreds of virtual machines

    The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection

    Get PDF
    The Drosophila host defense against gram-negative bacteria is mediated by the Imd pathway upon sensing of peptidoglycan by the peptidoglycan recognition protein (PGRP)-LC. Here we report a functional analysis of PGRP-LB, a catalytic member of the PGRP family. We show that PGRP-LB is a secreted protein regulated by the Imd pathway. Biochemical studies demonstrate that PGRP-LB is an amidase that specifically degrades gram-negative bacteria peptidoglycan. In agreement with its amidase activity, PGRP-LB downregulates the Imd pathway. Hence, activation of PGRP-LB by the Imd pathway provides a negative feedback regulation to tightly adjust immune activation to infection. Our study also reveals that PGRP-LB controls the immune reactivity of flies to the presence of ingested bacteria in the gut. Our work highlights the key role of PGRPs that encode both sensors and scavengers of peptidoglycan, which modulate the level of the host immune response to the presence of infectious microorganisms

    Long-Range Activation of Systemic Immunity through Peptidoglycan Diffusion in Drosophila

    Get PDF
    The systemic immune response of Drosophila is known to be induced both by septic injury and by oral infection with certain bacteria, and is characterized by the secretion of antimicrobial peptides (AMPs) into the haemolymph. To investigate other possible routes of bacterial infection, we deposited Erwinia carotovora (Ecc15) on various sites of the cuticle and monitored the immune response via expression of the AMP gene Diptericin. A strong response was observed to deposition on the genital plate of males (up to 20% of a septic injury response), but not females. We show that the principal response to genital infection is systemic, but that some AMPs, particularly Defensin, are induced locally in the genital tract. At late time points we detected bacteria in the haemolymph of immune deficient RelishE20 flies, indicating that the genital plate can be a route of entry for pathogens, and that the immune response protects flies against the progression of genital infection. The protective role of the immune response is further illustrated by our observation that RelishE20 flies exhibit significant lethality in response to genital Ecc15 infections. We next show that a systemic immune response can be induced by deposition of the bacterial elicitor peptidoglycan (PGN), or its terminal monomer tracheal cytotoxin (TCT), on the genital plate. This immune response is downregulated by PGRP-LB and Pirk, known regulators of the Imd pathway, and can be suppressed by the overexpression of PGRP-LB in the haemolymph compartment. Finally, we provide strong evidence that TCT can activate a systemic response by crossing epithelia, by showing that radiolabelled TCT deposited on the genital plate can subsequently be detected in the haemolymph. Genital infection is thus an intriguing new model for studying the systemic immune response to local epithelial infections and a potential route of entry for naturally occurring pathogens of Drosophila

    Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway

    Get PDF
    Innate immune recognition of microbes is a complex process that can be influenced by both the host and the microbe. Drosophila uses two distinct immune signaling pathways, the Toll and immune deficiency (Imd) pathways, to respond to different classes of microbes. The Toll pathway is predominantly activated by Gram-positive bacteria and fungi, while the Imd pathway is primarily activated by Gram-negative bacteria. Recent work has suggested that this differential activation is achieved through peptidoglycan recognition protein (PGRP)-mediated recognition of specific forms of peptidoglycan (PG). In this study, we have further analyzed the specific PG molecular requirements for Imd activation through the pattern recognition receptor PGRP-LC in both cultured cell line and in flies. We found that two signatures of Gram-negative PG, the presence of diaminopimelic acid in the peptide bridge and a 1,6-anhydro form of N-acetylmuramic acid in the glycan chain, allow discrimination between Gram-negative and Gram-positive bacteria. Our results also point to a role for PG oligomerization in Imd activation, and we demonstrate that elements of both the sugar backbone and the peptide bridge of PG are required for optimum recognition. Altogether, these results indicate multiple requirements for efficient PG-mediated activation of the Imd pathway and demonstrate that PG is a complex immune elicitor

    A Comprehensive MRI Study of Over 2000 Subjects

    Get PDF
    The incomplete-hippocampal-inversion (IHI), also known as malrotation, is an atypical anatomical pattern of the hippocampus, which has been reported in healthy subjects in different studies. However, extensive characterization of IHI in a large sample has not yet been performed. Furthermore, it is unclear whether IHI are restricted to the medial-temporal lobe or are associated with more extensive anatomical changes. Here, we studied the characteristics of IHI in a community-based sample of 2008 subjects of the IMAGEN database and their association with extra-hippocampal anatomical variations. The presence of IHI was assessed on T1-weighted anatomical magnetic resonance imaging (MRI) using visual criteria. We assessed the association of IHI with other anatomical changes throughout the brain using automatic morphometry of cortical sulci. We found that IHI were much more frequent in the left hippocampus (left: 17%, right: 6%, χ2−test, p < 10−28). Compared to subjects without IHI, subjects with IHI displayed morphological changes in several sulci located mainly in the limbic lobe. Our results demonstrate that IHI are a common left-sided phenomenon in normal subjects and that they are associated with morphological changes outside the medial temporal lobe

    Overdominant effect of a CHRNA4 polymorphism on cingulo-opercular network activity and cognitive control

    Get PDF
    The nicotinic system plays an important role in cognitive control, and is implicated in several neuropsychiatric conditions. Yet, the contributions of genetic variability in this system to individuals' cognitive control abilities are poorly understood, and the brain processes that mediate such genetic contributions remain largely unidentified. In this first large-scale neuroimaging genetics study of the human nicotinic receptor system (two cohorts, males and females, fMRI total N=1586, behavioral total N=3650), we investigated a common polymorphism of the high-affinity nicotinic receptor α4β2 (rs1044396 on the CHRNA4 gene) previously implicated in behavioral and nicotine-related studies (albeit with inconsistent major/minor allele impacts). Based on our prior neuroimaging findings, we expected this polymorphism to impact neural activity in the cingulo-opercular network involved in core cognitive control processes including maintenance of alertness. Consistent across the cohorts, all cortical areas of the cingulo-opercular network showed higher activity in heterozygotes compared to both types of homozygotes during cognitive engagement. This inverted U-shaped relation reflects an overdominant effect, i.e. allelic interaction (cumulative evidence p=1.33*10-5). Furthermore, heterozygotes performed more accurately in behavioral tasks that primarily depend on sustained alertness. No effects were observed for haplotypes of the surrounding CHRNA4 region, supporting a true overdominant effect at rs1044396. As a possible mechanism, we observed that this polymorphism is an expression quantitative trait locus (eQTL) modulating CHRNA4 expression levels. This is the first report of overdominance in the nicotinic system. These findings connect CHRNA4genotype, cingulo-opercular network activation and sustained alertness, providing insights into how genetics shapes individuals' cognitive control abilities

    Drosophila Immunity: Analysis of PGRP-SB1 Expression, Enzymatic Activity and Function

    Get PDF
    Peptidoglycan is an essential and specific component of the bacterial cell wall and therefore is an ideal recognition signature for the immune system. Peptidoglycan recognition proteins (PGRPs) are conserved from insects to mammals and able to bind PGN (non-catalytic PGRPs) and, in some cases, to efficiently degrade it (catalytic PGRPs). In Drosophila, several non-catalytic PGRPs function as selective peptidoglycan receptors upstream of the Toll and Imd pathways, the two major signalling cascades regulating the systemic production of antimicrobial peptides. Recognition PGRPs specifically activate the Toll pathway in response to Lys-type peptidoglycan found in most Gram-positive bacteria and the Imd pathway in response to DAP-type peptidoglycan encountered in Gram-positive bacilli-type bacteria and in Gram-negative bacteria. Catalytic PGRPs on the other hand can potentially reduce the level of immune activation by scavenging peptidoglycan. In accordance with this, PGRP-LB and PGRP-SC1A/B/2 have been shown to act as negative regulators of the Imd pathway. In this study, we report a biochemical and genetic analysis of PGRP-SB1, a catalytic PGRP. Our data show that PGRP-SB1 is abundantly secreted into the hemolymph following Imd pathway activation in the fat body, and exhibits an enzymatic activity towards DAP-type polymeric peptidoglycan. We have generated a PGRP-SB1/2 null mutant by homologous recombination, but its thorough phenotypic analysis did not reveal any immune function, suggesting a subtle role or redundancy of PGRP-SB1/2 with other molecules. Possible immune functions of PGRP-SB1 are discussed

    Neural correlates of three types of negative life events during angry face processing in adolescents.

    Get PDF
    Negative life events (NLE) contribute to anxiety and depression disorders, but their relationship with brain functioning in adolescence has rarely been studied. We hypothesized that neural response to social threat would relate to NLE in the frontal-limbic emotional regions. Participants (N = 685) were drawn from the Imagen database of 14-year-old community adolescents recruited in schools. They underwent functional MRI while viewing angry and neutral faces, as a probe to neural response to social threat. Lifetime NLEs were assessed using the 'distress', 'family' and 'accident' subscales from a life event dimensional questionnaire. Relationships between NLE subscale scores and neural response were investigated. Links of NLE subscales scores with anxiety or depression outcomes at the age of 16 years were also investigated. Lifetime 'distress' positively correlated with ventral-lateral orbitofrontal and temporal cortex activations during angry face processing. 'Distress' scores correlated with the probabilities of meeting criteria for Generalized Anxiety Disorder or Major Depressive Disorder at the age of 16 years. Lifetime 'family' and 'accident' scores did not relate with neural response or follow-up conditions, however. Thus, different types of NLEs differentially predicted neural responses to threat during adolescence, and differentially predicted a de novo internalizing condition 2 years later. The deleterious effect of self-referential NLEs is suggested

    Des routes et des hommes : la construction des échanges par les itinéraires et les transports

    Get PDF
    Les circulations humaines façonnent le paysage montagnard, traçant les routes qui permettent de franchir les obstacles, de créer un lien avec la plaine, de développer les activités économiques. Portant sur une diversité de territoires, cet ouvrage nous invite à mieux comprendre comment l’homme a ouvert des passages pour dépasser les frontières naturelles et culturelles des montagnes. La présentation de découvertes archéologiques, l’analyse de sources méconnues, l’étude du rôle de la technique et de la cartographie en dressent un panorama allant de l’Antiquité au xxe siècle. Le Congrès national des sociétés historiques et scientifiques rassemble chaque année universitaires, membres de sociétés savantes et jeunes chercheurs. Ce recueil est issu de travaux présentés lors du 142e Congrès sur le thème « Circulations montagnardes, circulations européennes »
    • …
    corecore